Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Comput Biol Med ; 172: 108191, 2024 Apr.
Article En | MEDLINE | ID: mdl-38457932

Bicuspid aortic valve (BAV), the most common congenital heart disease, is prone to develop significant valvular dysfunction and aortic wall abnormalities such as ascending aortic aneurysm. Growing evidence has suggested that abnormal BAV hemodynamics could contribute to disease progression. In order to investigate BAV hemodynamics, we performed 3D patient-specific fluid-structure interaction (FSI) simulations with fully coupled blood flow dynamics and valve motion throughout the cardiac cycle. Results showed that the hemodynamics during systole can be characterized by a systolic jet and two counter-rotating recirculation vortices. At peak systole, the jet was usually eccentric, with asymmetric recirculation vortices and helical flow motion in the ascending aorta. The flow structure at peak systole was quantified using the vorticity, flow rate reversal ratio and local normalized helicity (LNH) at four locations from the aortic root to the ascending aorta. The systolic jet was evaluated with the peak velocity, normalized flow displacement, and jet angle. It was found that peak velocity and normalized flow displacement (rather than jet angle) gave a strong correlation with the vorticity and LNH in the ascending aorta, which suggests that these two metrics could be used for clinical noninvasive evaluation of abnormal blood flow patterns in BAV patients.


Bicuspid Aortic Valve Disease , Heart Valve Diseases , Humans , Aortic Valve/abnormalities , Heart Valve Diseases/diagnostic imaging , Aorta , Hemodynamics/physiology
2.
Comput Biol Med ; 148: 105855, 2022 09.
Article En | MEDLINE | ID: mdl-35872413

BACKGROUND: Doppler echocardiographic (echo) assessment of residual mitral regurgitation (MR) after transcatheter edge-to-edge repair (TEER) is challenging and often subjective. This study aimed to evaluate the accuracy and feasibility of standardized quantitative echo methods for assessment of MR severity after MitraClip repair by comparing measurements against a reference MR severity obtained from patient-specific in silico models. METHODS: Post-procedure hemodynamics were simulated under five different MitraClip configurations in previously validated patient-specific in silico models for the treatment of functional MR. The residual regurgitant volume was calculated as in clinical practice using four quantitative virtual echo methods: pulsed Doppler, volumetric, proximal isovelocity surface area (PISA) and vena contracta area (VCA). Multiple permutations were performed for each method. Virtual echo MR results were evaluated against reference MR values directly extracted from the 5 patient-specific in silico models. RESULTS: The echo methods with the greatest accuracy were the three-dimensional (3D) volumetric method (r = 0.957, bias -0.8 ± 1.2 ml, p = 0.01), the 3D VCA method wherein velocity time integrals were evaluated for each jet assessed (r = 0.919, bias -1.5 ± 1.7 ml, p = 0.03), and the 3D PISA method integrating surface areas throughout systole (r = 0.98, bias -2.0 ± 0.9 ml, p = 0.003). The pulsed Doppler and 2D volumetric methods had technical limitations that may result in a high underestimation or overestimation of the MR severity after TEER. In the case of multiple regurgitant jets, a more accurate MR assessment was obtained when all significant jets were evaluated. CONCLUSIONS: Clinically, the 3D volumetric, 3D VCA and 3D PISA methods gave the most accurate MR quantification after TEER. Three-dimensional echo technologies harbor the potential of becoming the non-invasive imaging tool of choice for MR quantification after complex transcatheter mitral interventions.


Echocardiography, Three-Dimensional , Mitral Valve Insufficiency , Computer Simulation , Echocardiography, Doppler, Color , Hemodynamics , Humans , Reproducibility of Results , Severity of Illness Index
3.
Interact Cardiovasc Thorac Surg ; 34(6): 1124-1131, 2022 06 01.
Article En | MEDLINE | ID: mdl-35134955

OBJECTIVES: The study objective was to evaluate the aortic wall stress and root dilatation before and after the novel V-shape surgery for the treatment of ascending aortic aneurysms and root ectasia. METHODS: Clinical cardiac computed tomography images were obtained for 14 patients [median age, 65 years (range, 33-78); 10 (71%) males] who underwent the V-shape surgery. For 10 of the 14 patients, the computed tomography images of the whole aorta pre- and post-surgery were available, and finite element simulations were performed to obtain the stress distributions of the aortic wall at pre- and post-surgery states. For 6 of the 14 patients, the computed tomography images of the aortic root were available at 2 follow-up time points post-surgery (Post 1, within 4 months after surgery and Post 2, about 20-52 months from Post 1). We analysed the root dilatation post-surgery using change of the effective diameter of the root at the two time points and investigated the relationship between root wall stress and root dilatation. RESULTS: The mean and peak max-principal stresses of the aortic root exhibit a significant reduction, P=0.002 between pre- and post-surgery for both root mean stress (median among the 10 patients presurgery, 285.46 kPa; post-surgery, 199.46 kPa) and root peak stress (median presurgery, 466.66 kPa; post-surgery, 342.40 kPa). The mean and peak max-principal stresses of the ascending aorta also decrease significantly from pre- to post-surgery, with P=0.004 for the mean value (median presurgery, 296.48 kPa; post-surgery, 183.87 kPa), and P=0.002 for the peak value (median presurgery, 449.73 kPa; post-surgery, 282.89 kPa), respectively. The aortic root diameter after the surgery has an average dilatation of 5.01% in total and 2.15%/year. Larger root stress results in larger root dilatation. CONCLUSIONS: This study marks the first biomechanical analysis of the novel V-shape surgery. The study has demonstrated significant reduction in wall stress of the aortic root repaired by the surgery. The root was able to dilate mildly post-surgery. Wall stress could be a critical factor for the dilatation since larger root stress results in larger root dilatation. The dilated aortic root within 4 years after surgery is still much smaller than that of presurgery.


Aortic Aneurysm , Aged , Aorta/diagnostic imaging , Aorta/surgery , Aortic Aneurysm/diagnostic imaging , Aortic Aneurysm/surgery , Aortic Valve , Dilatation , Dilatation, Pathologic , Female , Humans , Male , Tomography, X-Ray Computed
4.
J Mech Behav Biomed Mater ; 127: 105081, 2022 03.
Article En | MEDLINE | ID: mdl-35092917

Ascending aortic aneurysms (AsAA) often include the dilatation of sinotubular junction (STJ) and extend proximally into the aortic root, which usually leads to aortic insufficiency. The novel surgery of the V-shape resection of the noncoronary sinus, for treatment of AsAA with root ectasia, has been shown to be a simpler procedure compared to traditional surgeries. Our previous study showed that the repaired aortic root aneurysms grew after the surgery. In this study, we developed a novel computational growth framework to model the growth of the aortic root repaired by the V-shape surgery. Specifically, the unified-fiber-distribution (UFD) model was applied to describe the hyperelastic deformation of the aortic tissue. A novel kinematic growth evolution law was proposed based on existing observations that the growth rate is linearly dependent on the wall stress. Moreover, we also obtained patient-specific geometries of the repaired aortic root post-surgery at two follow-up time points (Post-1 and Post-2) for 5 patients, based on clinical CT images. The novel computational growth framework was implemented into the Abaqus UMAT user subroutine and applied to model the growth of the aortic root from Post-1 to Post-2. Patient-specific growth parameters were obtained by an optimization procedure. The predicted geometry and stress of the aortic root at Post-2 agree well with the in vivo results. The novel computational growth framework and the optimized growth parameters could be applied to predict the growth of repaired aortic root aneurysms for new patients and to optimize repair strategies for AsAA.


Aortic Aneurysm, Thoracic , Aortic Aneurysm , Aortic Valve Insufficiency , Aorta/surgery , Aortic Aneurysm/diagnostic imaging , Aortic Aneurysm/surgery , Aortic Aneurysm, Thoracic/surgery , Aortic Valve , Aortic Valve Insufficiency/surgery , Humans
5.
J Am Soc Echocardiogr ; 34(11): 1211-1223, 2021 11.
Article En | MEDLINE | ID: mdl-34214636

BACKGROUND: Mitral regurgitation (MR) quantification by the proximal isovelocity surface area (PISA) method remains challenging. Using computer models, the authors evaluated the accuracy of different PISA methods and quantified their errors. METHODS: Five functional MR computer models of different geometric and tethering abnormalities were created, validated, and treated as phantom models, from which the reference values were directly obtained. Virtual two-dimensional (2D) PISA and three-dimensional (3D) PISA (both peak and integrated values) were performed on these phantom models. By comparing virtual PISA results with reference values, the accuracy of different PISA methods was evaluated, and their sources of errors were quantified. RESULTS: Compared with reference values of regurgitant flow rate, excellent correlations were found for true PISA (r = 0.99, bias = 32.3 ± 35.3 mL/sec), 3D PISA (r = 0.97, bias = -24.4 ± 55.5 mL/sec), followed by multiplane 2D hemicylindrical PISA (r = 0.88, bias = -24.1 ± 85.4 mL/sec) and hemiellipsoidal PISA (r = 0.91, bias = -55.7 ± 96.6 mL/sec). Weaker correlations were found for single-plane 2D hemispherical PISA (parasternal long-axis: r = 0.71, bias = -77.6 ± 124.5 mL/sec; apical two-chamber: r = 0.69, bias = -52.0 ± 122.0 mL/sec; apical four-chamber: r = 0.82, bias = -65.5 ± 107.3 mL/sec). For regurgitant volume quantification, integrated PISA was more accurate than peak PISA. The bias of 3D PISA improved from -12.7 ± 7.8 mL (peak PISA) to -2.1 ± 5.3 mL (integrated PISA). CONCLUSIONS: For functional MR quantification, 2D hemispherical PISA had significant underestimation, multiplane 2D hemiellipsoidal and hemicylindrical PISA showed improved accuracy, and 3D PISA was the most accurate. The PISA method is subject to both systematic underestimation due to the Doppler angle effect and systematic overestimation when regurgitant flow is not perpendicular to PISA contour. Integrated PISA is able to capture dynamic MR and is therefore more accurate than peak PISA. The sum of regurgitant flow rates is the most feasible way to perform integrated PISA.


Echocardiography, Three-Dimensional , Mitral Valve Insufficiency , Echocardiography , Echocardiography, Doppler, Color , Humans , Mitral Valve Insufficiency/diagnostic imaging , Reproducibility of Results
6.
J R Soc Interface ; 17(167): 20190893, 2020 06.
Article En | MEDLINE | ID: mdl-32517630

Calcific aortic valve disease (CAVD) is the most common valvular heart disease in the aging population, and is now believed to be a slow, progressive, yet actively regulated process. The disease progression can be divided into two phases: initiation phase associated with lipid deposition and inflammation response, and the later propagation phase with active calcification growth. It has been hypothesized that elevated mechanical stress plays a major role in both phases of disease progression. In order to identify a direct link between leaflet stress and calcification development, we performed patient-specific finite-element (FE) analyses of six bicuspid aortic valves (BAV), where the leaflets, raphe and calcifications were all considered. The results showed that during the initiation phase, calcium buildup is likely to occur along the leaflet-root attachment curve (ATC), and the commissures, which are subject to the most drastic changes in stress during the cardiac cycle. During the propagation phase, the presence of calcification would lead to local stress concentration along its boundary, hence further calcification growth. Three patterns of calcification formation were identified on BAV leaflets: 'radial', which extended radially from ATC into the leaflet belly region; 'commissure to commissure', which extended circumferentially along the coaptation; and 'raphe', which located in the vicinity of the raphe. Furthermore, we found a strong correlation between regions with a high risk of calcium buildup and regions with elevated mechanical stress. The high-risk regions predicted at diastole on the non-calcified leaflet from FE models agreed reasonably well with the in vivo calcification locations, which indicates that patient-specific FE modelling could help us to evaluate the potential risk of calcification formation in the early stage of CAVD.


Aortic Valve Stenosis , Bicuspid Aortic Valve Disease , Calcinosis , Heart Valve Diseases , Aged , Aortic Valve , Humans
...